Краснодарское высшее военное училище имени генерала армии С.М.Штеменко

МОДЕЛЬ И МЕТОДИКА МАСКИРОВАНИЯ АДРЕСАЦИИ КОРРЕСПОНДЕНТОВ В КИБЕРПРОСТРАНСТВЕ

Авторы: Кучуров В.В., Шерстобитов Р.С.

МОДЕЛЬ И МЕТОДИКА МАСКИРОВАНИЯ АДРЕСАЦИИ КОРРЕСПОНДЕНТОВ В КИБЕРПРОСТРАНСТВЕ

- **Цель** исследования вскрыть и сформулировать основные направления поиска новых технических решений для маскирования структуры распределенных информационных систем в киберпространстве, реализуя маскирующий трафик с учетом требований к своевременности информационного обмена.
- Метод исследования исследование операций в условиях неопределенности, применение теории марковских случайных процессов и решение уравнений Колмогорова для решения задачи повышения эффективности маскирующего обмена.
- Результат исследования нахождение вероятностных и временных характеристик процесса функционирования сети передачи данных при применении технических решений по маскированию информационных систем в киберпространстве. Полученные результаты позволяют явно реализовывать меры защиты, направленные на формирование у нарушителей устойчивых ложных стереотипов об информационных системах и процессах управления, реализуемых с их помощью.

Введение

- Киберпространство это виртуальная сетевая среда, сформированная в результате действий пользователей, программ и сервисов в сети связи общего пользования (ССОП) посредством сетей передачи данных, коммуникационных технологий и информационных систем.
- Информационные системы (ИС) это совокупность территориально распределенных сегментов средств обработки информации, объединенных сетями передачи данных, с использованием коммуникационных технологий через ССОП с целью предоставления пользователям информационных ресурсов (программ и сервисов).

Физическая постановка задачи

- Наилучшая стратегия защиты формировать у нарушителя ложное (неверное) представление о схеме информационных направлений (структуре (топологии) и параметрах (типологии)) ИС и, как неизбежное следствие, структуре системы управления, в интересах которой функционирует распределенная ИС. Это позволяет влиять на качество решений, принимаемых нарушителем по результатам разведки, предотвращать деструктивные воздействия на объекты защиты или снижать их результативность и эффективность.
- **Маскирование адресной информации корреспондентов** это ее сокрытие путем трансляции (*NAT*, от англ. *Network Address Translation* «преобразование сетевых адресов») истинных адресов элементов ИС и сети передачи данных (СПД), расширения адресного пространства элементов СПД (увеличение их количества) и введение ложных (маскирующих) элементов в киберпространство.
- Маскирующий обмен это упорядоченная по структуре и интенсивности совокупность ложных (маскирующих) пакетов сообщений, формируемых сетевыми информационными объектами (СИО) с целью управления демаскирующими признаками (ДМП) алгоритмов функционирования ИС и СПД, изменяющих видимую интенсивность информационного обмена между элементами СПД ВН

Физическая постановка задачи

Суть способа	Недостатки	Достоинства		
Установка меток в маскирующих пакетах сообщений	Нагрузка на СИО	Реализуется без дополнительных технических решений		
Фрагментация маскирующих сообщений перед передачей в СПД и уничтожение одного из фрагментов	Нагрузка на СИО	Реализуется без дополнительных технических решений		
Трассировка маршрута IP-пакетов и установление значений TTL (Time To Live) и Hop Limit (для IPv6)	• • • • • • • • • • • • • • • • • • • •	Используют технологии ССОП. Исключают нагрузку на приемник.		
Использование Path MTU discovery, установление относительно большого значения MTU и значения флага DF (Do Not Fragment) в «1» Согласование с приемником значения Maximum segment size для маскирующего трафика и управление значением MTU	IPv4, косвенный ДМП по протоколу ICMP, MTU Discovery Black Hole Косвенный ДМП по			

Физическая постановка задачи

Отказ терминации маскирующего трафика может происходить по следующим причинам:

- сбои функционирования СПД вследствие воздействия непреднамеренных помех;
- преднамеренные деструктивные воздействия на СПД (узлы ССОП);
- сбои и ошибки установления значений *MTU* узлом-отправителем;
- маршрутизация пакетов оператором ССОП по альтернативному маршруту;
- изменение параметров и структуры ССОП;
- изменение значений параметров безопасности маршрутов связи;
- изменение ИС (структуры системы управления), которую реализует СПД.

Формализованная постановка задачи на моделирование оценки эффективности маскирующего обмена

Стратегия защиты при реализации маскирующего обмена должна заключаться в оптимальном распределении ресурса СПД ВН для обеспечения своевременности информационного обмена (доставки сообщений) с учетом приоритетов корреспондентов (видов трафика), предотвращения задержки или прерывания выполнения процессов с высоким приоритетом со стороны процессов с низким приоритетом. При этом производительность СИО и предельная скорость передачи данных в СПД (пропускная способность каналов связи) выступают в качестве очевидных ограничений.

Формализованная постановка задачи на моделирование оценки эффективности маскирующего обмена

Своевременность информационного обмена (от англ. (information) exchange – обмен) определяют [8] через показатели своевременности обработки (от англ. processing – обработка) и своевременности доставки (от англ. delivery – доставка) следующими соотношениями:

$$K_{Proc} = P T_{Proc} \leq T_{Proc}^{Req}$$

$$K_{Del} = P T_{Del} \le T_{Del}^{Req}$$

$$K_{IE} = K_{Del} \cdot K_{Proc}$$

Формализованная постановка задачи на моделирование оценки эффективности маскирующего обмена

S – сеть передачи данных военного назначения (СДП ВН)

CP – множество входных параметров модели, параметры контроля насыщения соединения $CP \subseteq N_{_T}, I^{^{AT}}, I^{^{CT}}, I^{^{MT}}$

где N_T — узел-терминатор МПС (от англ. Node — узел, Terminator — оконечное устройство); I^{AT} , I^{CT} , I^{NT} — расчетная интенсивность общего трафика, конструктивного трафика, маскирующего трафика (от англ. Intensity — интенсивность);

 P_i – множество выходных параметров модели, значения финальных вероятностей состояний системы $S, P_i = \lim_{t \to \infty} P_i t$

где i=1,2,...,h, причем число состояний конечно и из каждого из них можно за конечное число шагов перейти в любое другое;

Z – множество внутренних параметров модели $Z \subseteq S_i, \Lambda_i$

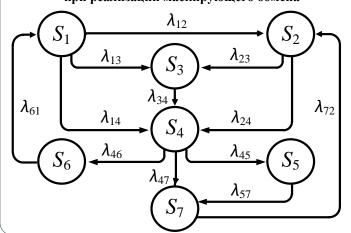
где $S_i = \{S_1, ..., S_h\}$, $\Lambda_j = \{\lambda_1, \lambda_2, ..., \lambda_J\}$, перечень моделируемых состояний системы и интенсивностей потоков событий

SIT – множество параметров условий функционирования (ситуаций), поддерживаемые моделируемой системой

$$SIT \subset I^{OT}, I^{FT}$$

где I^{OT} — моделируемая интенсивность трафика КПС других источников (от англ. Other — другой, дополнительный); I^{FT} — моделируемая интенсивность отказов узла-терминатора (от англ. Failure — отказ), выражаемая, например, через коэффициент $I^{FT} = \lambda_{57} / \lambda_{45}$

Q – показатель эффективности функционирования СПД ВН,

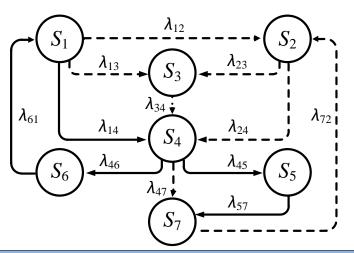

$$Q = \lim_{t \to \infty} P^{K_{IE}} t \qquad P^{K_{IE}} t \to \max$$

определяемый своевременностью информационного обмена.

 $\mu :< S, CP, Z, SIT > \rightarrow P_{i,Q} | CP \subseteq N_T, I^{AT}, I^{CT}, I^{MT}, P_i = \lim_{t \to \infty} P_i t, SIT \subseteq I^{OT}, I^{FT}$

$$< S, CP, Z, SIT > \rightarrow max P^{K_{IE}} t \mid P^{K_{IE}} \in P_i, i = 1, 2, ..., h$$

Граф состояний процесса функционирования СПД ВН при реализации маскирующего обмена

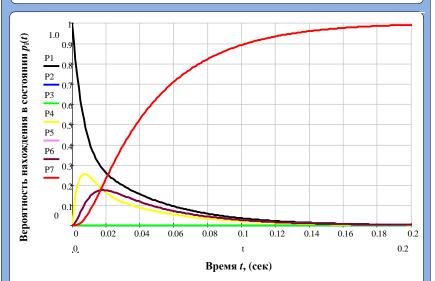

Дискретные состояния процесса маскирования СПД ВН

- S_1 Формирование конструктивных пакетов сообщений (КПС)
- S_2 Формирование маскирующих пакетов сообщений (МПС)
- S_3 Изменение текущих *IP*-адресов (расширение адресного пространства) элемента СПД ВН
- S_4 Передача КПС и МПС от отправителя к получателю
- S_5 Терминация МПС на транзитном УС СПД ССОП
- S_6 Своевременный прием КПС
- S_7 Несвоевременный прием КПС

Интенсивности потоков событий

- λ_{12} Заявки на прерывание формирования МПС в связи с формированием КПС
- λ_{13} Заявки на изменение текущих *IP*-адресов (расширение адресного пространства) КПС
- λ_{23} Заявки на изменение текущих *IP*-адресов (расширение адресного пространства) МПС
- **λ**₁₄ Заявки на передачу КПС получателю без расширения адресного пространства (КПС и МПС используют один адрес отправителя)
- λ_{24} Заявки на передачу МПС получателю без расширения адресного пространства (МПС и КПС используют один адрес отправителя)
- **λ**₃₄ Заявки на передачу КПС и МПС получателю с расширением адресного пространства (КПС и МПС используют множество адресов отправителя)
- **λ**₄₅ Заявки на терминацию МПС на узле-терминаторе
- **λ**₄₆ Заявки на приоритетное обслуживание КПС у получателя
- **λ**₄₇ Заявки на совместное с МПС обслуживание КПС у получателя
- **λ**₅₇ Заявки на совместное с КПС обслуживание МПС у получателя, вызванные отказом терминации (узла-терминатора)
- λ_{61} Квитирование, заявки на увеличение скорости ПД КПС вследствие своевременного приема КПС
- **λ**₇₂ Заявки на уменьшение скорости ПД МПС вследствие отказа терминации, возникновения очередей из КПС и МПС у получателя

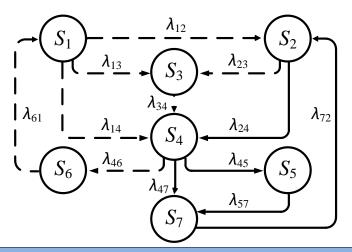
Граф состояний процесса функционирования СПД ВН при реализации маскирующего обмена для λ ситуации C_1


Ситуация С1

Формирование, передача и прием только КПС, МПС не формируется. Тогда поток КПС к приемнику интерпретируется как КПС других источников.

Ситуация позволяет исследовать СПД ВН без нагрузки источника МПС и найти максимальную интенсивность (скорость ПД) КПС. При вариации λ_{45} (λ_{57}) исследуется обеспечение своевременности при росте трафика (КПС) от других источников.

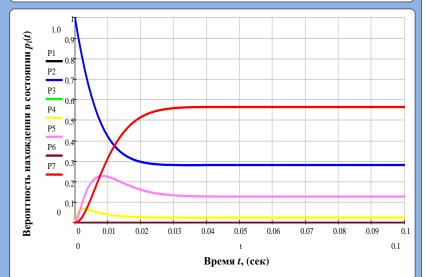
Числовая таблица приближенных значений $p_i(t)$ для λ ситуации C_1


	Точка		p(t)						
Этапы	интервала								
интегрир	интегрирова	n.(t)	(1)	n (4)	n (4)	- (1)	- (0)	m (4)	
ования,п	ния,	$p_I(t)$	$p_2(t)$	$p_3(t)$	$p_4(t)$	<i>p</i> ₅ (<i>t</i>)	$p_6(t)$	$p_7(t)$	
	$[t_0, t_1]$								
1	0	1	0	0	0	0	0	0	
2	1·10 ⁻³	0,905	0	0	0,086	$4,379 \cdot 10^{-3}$	$4,379 \cdot 10^{-3}$	1,5.10-4	
3	2·10 ⁻³	0,82	0	0	0,148	0,015	0,015	$1,092 \cdot 10^{-3}$	
10^{3}	10	1,654 · 10-4	0	0	9,423·10 ⁻⁵	1,248 · 10-4	1,248 · 10-4	0,999	

Результаты расчета зависимости вероятностей состояний от времени для значений интенсивностей событий соответствующие ситуации C_1

$$\sum_{i=1}^{7} p_i(10) = 1,654 \cdot 10^4 + 9,423 \cdot 10^{-5} + 1,248 \cdot 10^4 + 1,248 \cdot 10^4 + 0,999 = 1$$

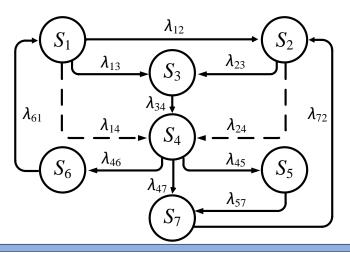
Граф состояний процесса функционирования СПД ВН при реализации маскирующего обмена для λ ситуации С2


Ситуация С2

Формирование, передача и прием только МПС (без терминации МПС), получателю КПС не передаются. КПС заданной (плановой) интенсивности от других источников. λ_{45} =max (искомое).

Ситуация позволяет исследовать СПД ВН без нагрузки источника КПС и найти максимальную интенсивность λ_{45} (скорость ПД) МПС при наличии заданного трафика от других источников. При увеличении λ_{45} находим предел обеспечения своевременности при увеличении МПС.

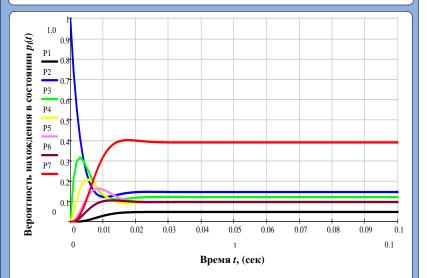
Числовая таблица приближенных значений $p_i(t)$ для λ ситуации C_2


Этапы	Точка ин-		p(t)							
интегри- рования, <i>п</i>	тервала интегрирования, $[t_0, t_1]$	$p_I(t)$	$p_2(t)$	$p_3(t)$	<i>p</i> ₄ (<i>t</i>)	$p_5(t)$	$p_6(t)$	<i>p</i> ₇ (<i>t</i>)		
1	0	0	1	0	0	0	0	0		
2	1·10 ⁻³	0	0,905	0	0,056	0,033	0	5,622·10 ⁻³		
3	2·10 ⁻³	0	0,819	0	0,07	0,087	0	0,023		
10^{3}	10	0	0,282	0	0,026	0,128	0	0,564		

Результаты расчета зависимости вероятностей состояний от времени для значений интенсивностей событий соответствующие ситуации ${\bf C}_2$

$$\sum_{i=1}^{7} p_i(10) = 0,282 + 0,026 + 0,128 + 0,564 = 1$$

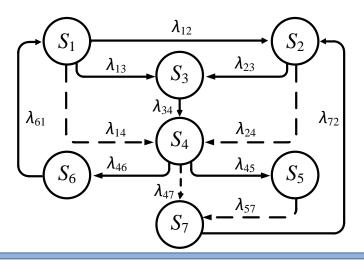
Граф состояний процесса функционирования СПД ВН при реализации маскирующего обмена для λ ситуации C_3


Ситуация С3

Формирование, передача и прием МПС и КПС заданной (плановой) интенсивности.

Ситуация позволяет исследовать предел обеспечения своевременности при увеличении МПС (без терминации МПС).

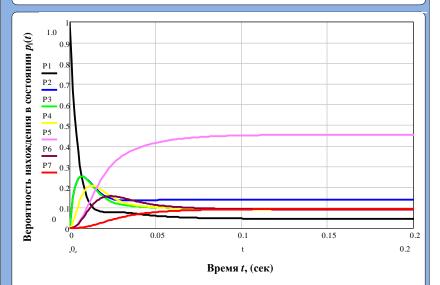
Числовая таблица приближенных значений $p_i(t)$ для λ ситуации C_3


	Точка	p(t)							
Этапы	интервала								
интегриров	интегриров	$p_I(t)$	$p_2(t)$	$p_3(t)$	p ₄ (t)	<i>p</i> ₅ (<i>t</i>)	<i>p</i> ₆ (<i>t</i>)	p ₇ (t)	
ания, n	ания,	$p_I(i)$							
	$[t_0, t_1]$								
1	0	0	1	0	0	0	0	0	
2	1·10 ⁻³	5·10 ⁻⁵	0,741	0,211	0,041	$3,75 \cdot 10^{-3}$	1,35·10 ⁻³	$1.8 \cdot 10^{-3}$	
3	2.10-3	4,5·10 ⁻⁴	0,549	0,298	0,109	0,022	8,333·10 ⁻³	0.012	
10 ³	10	0,049	0,146	0,122	0,098	0,098	0,098	0,39	

Результаты расчета зависимости вероятностей состояний от времени для значений интенсивностей событий соответствующие ситуации C_3

$$\sum_{i=1}^{7} p_i(10) = 0,049 + 0,146 + 0,122 + 0,098 + 0,098 + 0,098 + 0,39 = 1$$

Граф состояний процесса функционирования СПД ВН при реализации маскирующего обмена для λ ситуации C_4


Ситуация С4

Формирование, передача и прием МПС и КПС заданной (плановой) интенсивности.

Ситуация позволяет исследовать предел обеспечения своевременности при увеличении МПС с терминацией, предел сбоев терминации МПС для обеспечения своевременности.

Числовая таблица приближенных значений p_i(t) для λ ситуации C₄

	Точка		p(t)					
Этапы	интервала							
интегриров	интегрирован	$p_I(t)$	$p_2(t)$	$p_3(t)$	$p_4(t)$	$p_5(t)$	$p_6(t)$	p ₇ (t)
ания, <i>п</i>	ия,	$p_I(i)$	$p_2(i)$	$p_3(\iota)$	P4(1)	$p_3(i)$	$p_b(i)$	$p_{/(i)}$
	$[t_0, t_1]$							
1	0	1	0	0	0	0	0	0
2	1·10 ⁻³	0,819	0,086	0,086	$8,47 \cdot 10^{-3}$	$2,898 \cdot 10^{-4}$	$2,832 \cdot 10^{-4}$	$7,33\cdot10^{-6}$
3	2.10-3	0,67	0,148	0,148	0,029	$2,055\cdot 10^{-3}$	1,97·10 ⁻³	6,049·10 ⁻⁵
10^{3}	10	0,045	0,138	0,091	0,09	0,452	0,09	0,092

Результаты расчета зависимости вероятностей состояний от времени для значений интенсивностей событий соответствующие ситуации ${\bf C_4}$

$$\sum_{i=1}^{7} p_i(10) = 0,045 + 0,138 + 0,091 + 0,09 + 0,452 + 0,09 + 0,092 = 1$$

Выводы

- Представленная математическая модель оценки эффективности маскирующего обмена в киберпространстве учитывает влияние и характер воздействия на СПД информационных потоков от передающего к принимающему абоненту, фоновую нагрузку ИС, отказы системы маскирования, которые способны снизить доступность принимающего абонента и ухудшить значение показателя своевременности информационного обмена в ИС.
- Научная новизна модели заключается в применении математического аппарата теории марковских случайных процессов и решении уравнений Колмогорова для исследования и решения задачи повышения эффективности маскирующего обмена при маскировании адресации корреспондентов в киберпространстве за счет обеспечения своевременности информационного обмена конструктивными сообщениями.
- Практическая значимость заключается в нахождении вероятностных и временных характеристик, описывающих состояния процесса функционирования сети передачи данных в различных условиях, которые необходимо использовать при синтезе ложных информационных систем для решения задач дезинформации нарушителя относительно архитектуры и конфигурации объектов защиты.